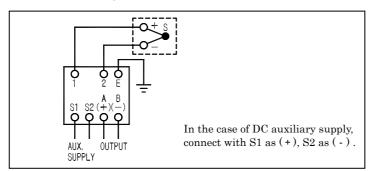
§ BOX TRANSDUCER § SENSOR TRANSDUCER THERMOELECTRIC TEMPERATURE TRANSDUCER

THERMOELECTRIC TEMPERATURE TRANSDUCER HTT2-82A/ HTT2-83A (DC110V power source)


Use

With thermal electromotive force of various thermocouples according to JIS as input, convert temperature with insulation into DC signal in proportion to temperature with insulation.

Features

- 1. Withstand voltage 2, 000V AC (between input/output/auxiliary supply/earth).
- 2. Impulse withstand voltage 5kV 1.2/50µs (electric circuit/earth), positive/ negative polarity 3 times each is guaranteed.
- 3. With output line surge protection (2, 000A, $\pm 8/20\mu s$), can transmit an output directly to a distant place.
- 4. Constant voltage/current output.

Connection diagram

Specification and performance

HTT2-82A (120 × 56 × 130mm/800g)

Kind of thermo- couple	Standard input range	Input	Output (load resistance)	Auxiliary supply	Common specification
В	7~9	1 : 0-200 2 : 0-300	1: DC0-100mV (200) 2: DC0-1V (200)	1 : AC100V±15%, 50/60Hz 2 : AC110V±15%, 50/60Hz	Tolerance: 0.5%
R	7~9	3:0-400	3: DC0-5V (1k)	3: AC200V±15%, 50/60Hz	Response time:
s	7~9	4 : 0-500 5 : 0-600	4: DC 0-10V (2k) 5: DC1-5V (1k)	4: AC220V±15%, 50/60Hz 5: DC24V±15%	1sec. (±1%)
K	2~8	6 : 0-800 7 : 0-1,000	A: DC0-1mA (10k) B: DC0-5mA (2k)	6: DC48V±15% 7: DC110V (88-143V)	Consumption VA: AC power source 3.5VA
E	1~5	8: 0-1,200 9: 0-1,400	C: DC0-10mA (1k) D: DC0-16mA (600)	other than those above	DC power source 3.5W DC 110V 4.5W
J	1~5	0 : other than	E : DC1-5mA (2k)		Weight: 800g
Т	1~2	those above	☐: DC4-20mA (500) ☐: other than those above		

Open of current output: even if the current output terminal is used in a state of regular open, there is no problem.

Also, a voltage of approx. 15V occurs on the output terminal.

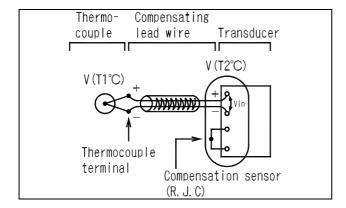
DC 110V power: Type is HTT2-83A.

Have a consultation with us for N thermocouple.

§ BOX TRANSDUCER § SENSOR TRANSDUCER THERMOELECTRIC TEMPERATURE TRANSDUCER

Built-in linearizer

Thermal electromotive force of a thermocouple is not proportional to temperature.

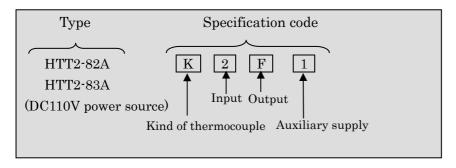

The linearizer converts thermal electromotive force into an output proportional to temperature.

Built-in burnout

The device detects disconnection of a thermocouple and does scale-out of output to positive (+) side. Scale-out to negative side is also manufacturable if specified.

Built-in cold junction compensation

In principle, a thermocouple generates a thermal electromotive force equivalent to $V(T1\)\ -\ V(T2\)$ as Vin. Compensating sensor compensates a thermal electromotive force equivalent to $T2\$.


Compensating wire

A compensating wire compensates temperature difference between thermocouple terminals and transducer terminals. Because color (material) of compensating wire varies according to thermocouple type, choose a compensating wire in accordance with thermocouple. Match positive and negative polarities when connecting.

External resistance range

An External resistance value is the resistance value of a reciprocating circuit which consists of thermocouple connected to the transducer, compensating wire, connecting wires and so on. Use the product within a reciprocal circuit resistance less than or equal to 25Ω .

Purchase specifications

